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Abstract

Zinc (Zn) is an essential nutrient that affects immune function, especially within the digestive system, although the underlying
mechanisms are not well understood. This study examined the effects of short-term moderate Zn restriction on intestinal health and immune
function in lipopolysaccharide (LPS)-challenged mice through plasma cytokine profiling and histological evaluation of intestinal tissue
sections. Adult male mice were fed with a Zn-adequate (40 ppm) or a Zn-marginal (4 ppm) diet for 4 weeks, and then a bacterial challenge
was simulated by intraperitoneal injection of LPS (10 μg/g body weight [BW]) or saline (control). BW was recorded weekly, and feed intake
was recorded daily over the last week. Voluntary locomotor activity was assessed 6 and 24 h after the challenge. Plasma and tissues were
collected 0, 6 or 24 h after the challenge for analysis. Histological analysis of intestinal samples included evaluation of villi length and width,
lamina propria (LP) width, crypt depth and intraepithelial as well as LP leukocyte numbers. Plasma was analyzed for IL-1β, IL-4, IL-6, IL-
10, IL-12p40, IL-12p70, interferon gamma and tumor necrosis factor α. Diet did not affect BW and feed intake. The LPS challenge led to
decreased voluntary locomotor activity (Pb.05). Moderate Zn restriction led to greater leukocyte infiltration in the LP after the LPS challenge
(Pb.05) and higher plasma IL-6 and IL-10 levels 24 h after the LPS challenge (Pb.01). Results indicate that Zn status impacts intestinal
responses to LPS through modulation of the cytokine response and leukocyte recruitment, and this impact is evident even with short-term
(4 weeks) moderate Zn restriction.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Zinc (Zn) is a nutritionally essential trace element that
functions in numerous metabolic pathways. It plays a critical
role in immune function (reviewed in Reference [1]) as
moderate Zn deficiency and severe Zn deficiency are known
to affect immunity in human and nonhuman models [2,3]. Zn
status affects numerous lymphocyte functions including
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mitogenesis, antibody synthesis and other facets of cell-
mediated immunity, which are negatively impacted by Zn
deficiency (reviewed in Reference [4]). Humoral immunity is
also affected by Zn deficiency, which induces B-lymphocyte
apoptosis and reduces antibody responses (reviewed in
Reference [5]), although Zn deficiency does not affect the
production of IL-4, IL-6 and IL-10 [6] cytokine expression in
either nonchallenged or immune-challenged cells and
animals [7,8]. Zn deficiency decreases IL-2 [6,9,10] and
interferon gamma (IFNγ; [6,7,10]) production by peripheral
blood mononuclear cells (PBMCs) but increases tumor
necrosis factor α (TNFα) production by endothelial cells
[11] and innate immune cells [8,10]. Similarly, moderate Zn
restriction increases IL-1β production by PBMCs [6,8,10]
and IL-8 messenger RNA expression [10].

Zn is also implicated in diarrhea due to its effects on
intestinal mucosal permeability [12] and the ability of dietary
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Zn to prevent or alleviate intestinal diseases [13]. At
pharmacological levels, this effect may be due to the
antimicrobial properties of Zn (e.g., [14]) and disruption of
bacterial-enterocyte binding as well as subsequent bacterial
translocation [15]. However, at physiological levels, it is
more likely that Zn affects intestinal physiology and immune
function through its effects on cytokine production, as
mentioned above.

The level of dietary Zn examined is a critical component
of any investigation of the effect of Zn status on intestinal
immune function and systemic immune function. Immune
modulation by Zn has typically been studied in the context of
frank Zn deficiency, although moderate Zn deficiency is of
interest because this nutritional condition is difficult to
diagnose — yet classical studies have demonstrated
increased growth of Zn-supplemented children even from
middle to upper socioeconomic classes in the United States
and Canada [16,17]. This trial compared Zn adequacy with
moderate Zn restriction in adult animals in order to assess the
primary effects of Zn restriction in the absence of secondary
effects such as impaired growth and decreased intake.

Intestinal immune function is often studied in the context
of oral administration of a pathogen or an immunogenic
compound. However, the use of live pathogens is of concern
due to limitations on quantification of the exact number of
organisms and their proliferative capacity after the challenge.
Therefore, this trial examined a non-oral challenge that
elicited intestinal and systemic immune responses.

The objectives of the present study were to determine the
ability of an intraperitoneal challenge to elicit intestinal and
systemic immune responses and to examine the effects of
moderate Zn restriction on these intestinal responses as well
as on systemic cytokine concentrations in adult male mice.
2. Materials and methods

2.1. Animals and treatments

All procedures were approved by the California Poly-
technic State University Institutional Animal Care and Use
Committee. Male BALB/c mice (n=96, 6 weeks old, mean
body weight (BW)=20.05 g; Harlan, Indianapolis, IN, USA)
were housed in eight cages (n=12/cage), and each cage was
supplied with either a Zn-adequate (40.1±4.2 ppm) or a Zn-
marginal (3.9±1.8 ppm) diet (Research Diets, New Bruns-
wick, NJ, USA) for 4 weeks. Zn content of feed was assessed
using flame atomic absorption spectroscopy (Perkin Elmer
2380, Perkin Elmer, Norwalk, CT, USA). Feed (∼1.0 g of
each diet) samples were diluted eightfold with 5% nitric acid
(trace metal grade, Fisher Scientific, Pittsburgh, PA, USA).
Zn standards, prepared from a reference solution (Fisher
Scientific) in 5% nitric acid, were used as internal control.
All analyses were conducted in acid-washed glassware.
Recovery tests were performed to confirm the accuracy of
the abovementioned method, and the recovery of Zn was
108±1.1% (n=5, CV=2.3%). In order to avoid environmental
exposure to Zn, animals were allowed free access to
deionized water at all times and were housed in plastic
cages. BW was recorded weekly throughout the study, and
feed intake was recorded daily for the last week of the study.

After 4 weeks of the dietary treatments, half of the
animals in each cage (n=6) were exposed to intraperitoneal
injection of saline (0.2 ml, control) and the other half (n=6)
were injected with lipopolysaccharide (LPS; 10 μg/g BW in
0.2 ml) to simulate a bacterial challenge. LPS (intraper-
itoneal route) has previously been shown to induce
monocyte adhesion and infiltration into intestinal tissues of
mice [18]; thus, it was predicted that LPS would induce
intestinal distress, similar to other diarrhea models. Four
animals from each cage (two control and two LPS) were
euthanized by CO2 asphyxiation for sample collection 0, 6
and 24 h after the intraperitoneal challenge.

2.2. Behavioral analysis

Prior to sample collection, animals were assessed for
voluntary locomotor activity by a method adapted from the
work of Cravatt et al. [19]. Briefly, each mouse was placed in
the center of a 78�56-cm cage marked with 7-cm2 grid lines
on the bottom, and the number of squares traversed in 1 min
was recorded.

2.3. Tissue sample collection

Immediately after euthanasia, blood was collected into
heparinized tubes and plasma was isolated and frozen at
−20°C for cytokine analysis. Subsequently, intestinal
samples were isolated from animals 24 h after the challenge.
Jejunum samples were isolated from the intestine immedi-
ately distal to the pancreatic loop. Ileum samples were
isolated from the midpoint between the jejunum and the
ileocecal junction. Each intestinal sample was immediately
washed with cold saline and then rinsed with 10% formalin,
recut to ∼2-cm sections and placed in 10% formalin jars for
embedding and hematoxylin–eosin staining by a commercial
laboratory (IDEXX, West Sacramento, CA, USA).

2.4. Plasma cytokine analysis

Plasma cytokine analysis was performed using Bio-Plex
mouse cytokine assay panels (Bio-Rad Laboratories, Her-
cules, CA, USA) analyzed using a Luminex 100 analyzer
(Luminex, Austin, TX, USA). Cytokines analyzed were
IFNγ, IL-1β IL-4, IL-5, IL-6, IL-10, IL-12p40, IL-12p70
and TNFα.

2.5. Histological analysis of intestinal sections

For each intestinal section (per animal), three villi were
randomly selected to measure villus length, villus width,
lamina propria (LP) width and crypt depth as well as to count
leukocytes in the LP and intraepithelial regions. Using a 5�
field, villus length was evaluated as the distance from the
apical region to the base of the villus and villus width was
evaluated as the distance from one side of the brush border



Table 1
Feed intake and BW of animals fed with a Zn-adequate (Ad-Zn) diet and
those fed with a Zn-marginal (Lo-Zn) diet

Lo-Zn diet Ad-Zn diet P

Intake (g/day) 2.59±0.06 2.56±0.05 .52
Initial BW (g) 20.34±0.33 19.76±0.12 .12
Final BW (g) 24.32±0.26 23.65±0.23 .07

Intake was measured daily during Week 4, and BW was measured weekly
across the 4-week experiment (n=4 cages/diet, 12 animals/cage). Values are
expressed as mean±S.E.M.

able 3
ean plasma cytokine concentrations (pg/ml) of mice 0, 6 or 24 h after
hallenge by intraperitoneal injection of LPS or saline after 4-week
eatment with either an Ad-Zn or an Lo-Zn diet a

LPS Saline S.E.M. Effect

0 h 6 h 24 h 0 h 6 h 24 h

-1β
Ad-Zn 18.1 87.4 13.9 20.5 10.7 21.6 15.2 NS
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membrane to the other side of the brush border membrane
[20]. Using a 10� field, LP width was determined by
measuring the width of the vascular region in the center of
the villus [21,22] and crypt depth was measured as the depth
of the invaginations located at the base of each villus.
Leukocytes were identified and counted as described by
Bjerregaard [23].

2.6. Statistical analysis

All dependent variables were analyzed using a general
linear model (JMP, SAS, Cary, NC, USA) with analysis of
variance to determine the main effects of diet, challenge,
time after the challenge (not included for intestinal histology)
and their interactions. When interactions were not significant
(PN.20), they were removed from the model. Tukey's HSD
(honestly significant difference) was used to assess differ-
ences among all pairwise comparisons. Cage was initially
included in the statistical analysis, but it was found to be
nonsignificant in all cases and subsequently dropped from
the model. Differences were considered significant at Pb.05.
Lo-Zn 31.2 194.7 42.4 35.6 9.7 ND
-4
Ad-Zn 22.0 6.9 6.1 34.9 15.8 34.7 2.0 C, T
Lo-Zn 28.2 8.0 2.9 25.5 8.1 ND
-5
Ad-Zn 0 18.3 7.5 5.9 13.5 0 1.6 T
Lo-Zn 0 27.2 12.6 1.2 16.1 ND
-6
Ad-Zn 1.5 4865.6 1009.5 2.2 38.7 2.2 320.0 D, C, T,

C�T, D�TLo-Zn 2.3 4540.6 5066.2 2.1 1.6 ND
-10
Ad-Zn 0 108.8 68.9 0 2.0 9.1 13.6 D, C, T,
3. Results

Consumption of the Zn-marginal diet for 4 weeks did not
affect feed intake over the last week of the study, BW change
over the course of the study, and initial or final BW (Table 1).

Visual observation revealed that challenge with LPS
resulted in severe diarrhea 6 and 24 h after the challenge.
Voluntary locomotor activity was significantly affected by
the LPS challenge; saline-challenged mice had greater
Table 2
Voluntary locomotor activity of mice 6 or 24 h after challenge by
intraperitoneal injection of LPS or saline after 4-week treatment with
either an Ad-Zn or an Lo-Zn diet (n=4 cages/diet, 6 animals/cage for each
challenge, 12 animals/cage in total)

Time after
challenge (h)

Saline LPS

Lo-Zn Ad-Zn Lo-Zn Ad-Zn

6 28.3±4.9a 21.0±4.5a 6.5±2.3b 3.5±0.9b

24 26.0±6.7a 30.5±9.7a 3.6±1.3b 4.6±2.6b

Activity was assessed by placing animals in a 78×56-cm cage marked with
7-cm2 grid lines and by counting the number of squares traversed in 1 min.
Values are expressed as mean±S.E.M. Differing superscripts within a row
indicate significant differences (Pb.05).
activity than did LPS-challenged animals (26.4 traversed
squares vs. 4.5 traversed squares, as pooled means for both
time points and both diet groups, Pb.05; Table 2).

The immune challenge also affected plasma cytokine
concentrations (Table 3). Specifically, LPS increased plasma
IL-6, IL-10, IL-12p40, IFNγ and TNFα (Pb.05 for each) but
decreased plasma IL-4 and IL-12p70 (Pb.05 for each). The
Zn-marginal diet led to an overall increase (across all time
points and for LPS and saline groups combined) in IL-6
(Pb.05), with a similar trend for IL-10 (P=.07). Of greatest
interest is the interaction of diet and LPS challenge on
plasma IL-6 and IL-10 (Pb.05 for each), for which
concentrations of each cytokine were elevated 6 h after the
LPS challenge for mice fed with either diet but remained
elevated 24 h after the injection only for mice fed with the
Zn-marginal diet (Fig. 1).

Intestinal histology was affected by diet and the LPS
challenge. In the jejunum 24 h after the challenge, LPS
resulted in decreased villus length and increased crypt depth
(Pb.05 for each; Fig. 2A) as well as increased numbers of
leukocytes in the intraepithelial and LP regions (Pb.05;
C�T, D�TLo-Zn 0 152.4 221.8 0 0 ND
-12p40
Ad-Zn 187.5 481.1 143.7 219.7 250.6 284.5 24.6 T, C�T
Lo-Zn 271.9 508.5 108.9 227.5 170.6 ND
-12p70
Ad-Zn 158.4 29.9 12.1 179.0 96.4 228.7 15.4 C�T
Lo-Zn 234.5 35.3 16.1 193.5 22.3 ND
Nγ
Ad-Zn 458.0 892.1 252.0 577.6 438.7 750.7 73.9 C�T
Lo-Zn 643.2 1297.9 297.7 530.5 267.2 ND
NFα
Ad-Zn 0 175.3 25.5 0.8 0.2 0 14.7 D, C, T
Lo-Zn 0.4 215.1 127.7 0 0.3 ND

a Standard error represents the pooled S.E.M. for each cytokine. The
ffect of diet (D), challenge (C), time (T) or interactions was considered
gnificant at Pb.05 and is listed in the last column. ND indicates not
etermined; NS, not significant.
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Fig. 2B). Zn status did not significantly affect surface area
measurements in the jejunum (PN.1 for all; Fig. 3A), but mice
fed with the Zn-marginal diet had significantly greater
leukocyte numbers in the intraepithelial region (Pb.05;
Fig. 3B). Additionally, an interaction between diet and
challenge demonstrated that mice fed with a Zn-marginal diet
and challenged with LPS had greater numbers of intraepithe-
lial leukocytes in the jejunum as compared with Zn-adequate
animals (Diet�Challenge interaction, Pb.05; Fig. 4).

In the ileum 24 h after the challenge, LPS increased crypt
depth (Pb.05; Fig. 5A) and led to greater numbers of
Fig. 1. IL-6 (A) and IL-10 (B) are induced 6 h after the immune challenge
and remain elevated at 24 h in Zn-marginal (Lo-Zn) mice but decline in Zn-
adequate (Ad-Zn) mice. Mice were challenged with intraperitoneal
injection of LPS and then sacrificed 6 and 24 h after the challenge.
Serum was collected, and serum IL-6 and IL-10 protein concentrations
were determined. IL-6 values 0 h after the challenge are presented as mean
(S.E.M.); IL-10 was not detected 0 h after the challenge. Asterisks indicate
significant difference between the Lo-Zn and Ad-Zn animals (Pb.05); error
bars represent S.E.M.

Fig. 2. Effects of immune challenge (white bars indicate saline control; black
bars, LPS) on intestinal morphology (A) and leukocyte recruitment (B) in
the jejunum of Ad-Zn and Lo-Zn animals. Significant differences due to the
challenge are noted by an asterisk (Pb.05); error bars represent S.E.M.
leukocytes in the intraepithelial region as well as a
significant increase in LP leukocyte numbers (Pb.05;
Fig. 5B). Diet also affected ileum histology; animals fed
with the Zn-marginal diet had greater villus length and crypt
depth as compared with the Zn-adequate animals (Pb.05;
Fig. 6A). Finally, the Zn-marginal diet led to a significantly
greater number of leukocytes in the LP region as compared
with animals fed with the Zn-adequate diet (Pb.05; Fig. 6B).
4. Discussion

This experiment demonstrates that an intraperitoneal LPS
challenge is sufficient to induce intestinal inflammation. In
this experiment, immune challenge generally increased crypt
depth and the number of leukocytes in the jejunum and
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ileum, all of which are responses typical of intestinal
inflammation. In response to cytokines and other chemical
mediators induced by an enteric challenge, leukocyte
infiltration occurs via interaction of leukocyte integrins and
endothelial cell surface adhesion molecules such as intra-
cellular adhesion molecule [18]. As a result of leukocyte
infiltration to the intestine, crypt abscess formation may be
induced, as seen in the current trial in the form of increased
crypt depth. Additionally, excessive inflammation in the
intestine may reduce enterocyte barrier function, thus
allowing additional bacterial and inflammatory challenges
to occur (reviewed in Reference [24]).

In addition to intestinal inflammation, systemic inflam-
mation was induced, as evidenced by changes in plasma
cytokines as well as behavior. In terms of behavioral
Fig. 3. Effects of diet (white bars indicate Lo-Zn mice; black bars, Ad-Zn
mice) on intestinal morphology (A) and leukocyte recruitment (B) in the
jejunum of LPS-challenged and nonchallenged animals combined.
Significant differences due to diet are noted by an asterisk (Pb.05);
error bars represent S.E.M.

ig. 4. Interaction of immune challenge with LPS or saline (control) and Zn
atus on leukocyte recruitment in the intraepithelial region of the jejunum.
ifferent letters indicate significant differences (Pb.05); error bars represent
.E.M.
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responses, LPS-challenged mice had substantially reduced
exploratory activity. Previous trials have shown that an LPS
challenge reduces the frequency of typical behaviors,
particularly in dominant animals [25], and this response is
likely due to cytokine action on the brain; LPS has been
shown to induce TNFα, IFNγ and IL-10 in a similar mouse
enteric challenge model [26] as well as IL-6, IL-10 and
TNFα in a cecal ligation model of sepsis [27]. Similarly, the
LPS challenge in the current trial increased secretion of IL-6,
IL-10, IFNγ and TNFα.

Dietary Zn status also affected cytokine secretion and
intestinal leukocyte numbers. The LPS challenge elicited a
similar and pronounced immune response in all animals, but
the response in the Zn-restricted mice was prolonged as
compared with that in the mice fed with adequate Zn in terms
of IL-6 and IL-10 and in terms of intestinal leukocyte
numbers. IL-6 is generally considered to be pro-inflamma-
tory (e.g., [28]), while IL-10 is anti-inflammatory [29] — in
addition, its levels are generally correlated with those of IL-6
during bacterial infection [30]. In this trial, inflammatory
responses appeared to overwhelm anti-inflammatory para-
meters in Zn-restricted mice since enhanced intestinal
leukocyte infiltration was observed after the LPS challenge
in these animals. The implications of prolonged inflamma-
tion and leukocyte infiltration in the intestine are
substantial; resolution of intestinal inflammation is critical
for host survival due to alterations in intestinal perme-
ability and loss of nutrients and water, increased bacterial
translocation and other detrimental effects on host
physiology (reviewed in References [24,31]). It has been
shown that adequate Zn status prevents barrier disruption
in the enterocyte monolayer as well as bacterial adhesion
and internalization [15], which result in intestinal immune
activation [32]. Further experimentation will be required to
elucidate the mechanistic basis for the observed interaction
between diet and LPS challenge on IL-6, IL-10 and
leukocyte recruitment.



Fig. 5. Effects of immune challenge (white bars indicate saline control;
black bars, LPS) on intestinal morphology (A) and leukocyte recruitment
(B) in the ileum of Ad-Zn and Lo-Zn animals combined. Significant
differences due to the challenge are noted by an asterisk (Pb.05); error bars
represent S.E.M.

ig. 6. Effects of diet (white bars indicate Lo-Znmice; black bars,Ad-Znmice)
n intestinal morphology (A) and leukocyte recruitment (B) in the ileum of
PS-challenged and nonchallenged animals combined. Significant differences
ue to diet are noted by an asterisk (Pb.05); error bars represent S.E.M.
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Interestingly, previous trials have not shown effects of Zn
status on IL-10, although Zn deficiency has been associated
with increased production of IL-2 and IFNγ by T helper cells
[10]. The mechanism by which Zn status may have affected
IL-10 and IL-6 production in the current trial may be via
effects on nuclear factor-kappa B (NF-κB) and peroxisome
proliferator-activated receptor gamma (PPARγ). PPARγ is
known to suppress expression of inflammatory cytokines
[33], and Zn deficiency has been shown to reduce PPARγ
expression and increase NF-κB activation in endothelial
cells [34]. Regardless of the mechanism, enhancement of IL-
10 is negatively correlated with survival during bacterial
challenges in humans [30].

In contrast to its effects on immune responses, moderate
Zn restriction in adult mice for 4 weeks had little effect on
feed intake and BW. Given that mice were at maintenance
and that the level of Zn deficiency was moderate— and for a
relatively short period, this response is not surprising. In
growing animals, similar levels of dietary Zn have been
shown to result in reduced growth rate and feed intake due to
direct effects on appetite-related gene expression in the
pituitary [35]. The lack of effect on BW and intake in the
present study despite a 10-fold difference in dietary Zn
content supports the notion that the Zn deficiency that these
animals experienced was only moderate.

In summary, this trial demonstrates that an intraperitoneal
challenge with LPS is sufficient to induce intestinal
inflammation and systemic inflammation. Moderate Zn
restriction in adult mice altered the response to LPS and
generally resulted in prolonged systemic cytokine levels and
increased leukocyte infiltration in the small intestine. These
changes may contribute to the etiology of diarrhea and other
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issues associated with immunocompetence observed in Zn
deficiency, and this study demonstrates that even moderate
Zn restriction for a short period may affect immune function.
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